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SU3L%IARY.

The fo~owing paper, prepared for the National Advisory Committee for Aeronautics, is a
critical study of the results of propdler model tests with the vie-iv of obtaining a clear insight
into the mechanism of the propeUer action and of examining the soundness of the physical
explanation generally given. The nominal slipstrea velocity is plotted against the propeller
tip velocity, both measured by the wlocit~ of flight as a unit. Within the range corresponding
to conditions of fight, the curve thus obtained is a straight line. Its inclination depends
cbiefiy on the effective blade width, its position on the effective pitch. These t-ivo quantities
can therefore be determined from the restit of each propelIer test. Both can eady be estimated
therefrom for new propellers of sindar type. Thus, a simple method for the computation of
propellers suggests itself.

The slip curve mentioned is riot a straight line along its entire km@h. At a smalI relative
tip velocity it is bent up, because the lift curve of the blade sections used is bent up that way
at sma~ lift coefficients. At a certain high relati~e tip wIocity the dip curve shows a break
and runs then straight again but at a different slope. The slope is increased so that at zero

~dvamce the propeller develops a larger thrusk than codd be expected from the ma=gnitmde of
the thrust in ‘tight.
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Introduction

There is at presenk stiU some controversy as to the exact explanation of propeller action,
an important probkmj because the successful computation and design of propellers depend on its
solution. The present paper is an attempt to approach the soktion by means of analyzing

a large and systematic series of propelIer model tests, ex amining the uniformity and reggarity

of the results, and establishing then the general laws underlying them.
Dr. W. F. Durand’s and E. P. Lasley’s series of prop~er tests (ref. 1) is the most perfect

and complete one ever published. The tests are selected and executed in the most carefd way,

the method of conducting them is excelIent, and the type of wind tunnel is chosen most suitably
for this purpose. It seems therefore most expedient to begg with an analysis of these tests.

This paper is contined to them only. It is, however, the intention of the author Iater to eztend

the results by a similar analysis of other propeDer tests avaflable.

ACTION OF THE BLADE ELEMENTS.

The generai principles of propeuer action are gwer~y agreed upon in so far as the blade
elements are understood to ack like portions of wings. Hence a regular and uniform relation

between the prop~er forces and the characterktic~ of ik motion can not be expected, except
if the blade sections themselves show a regular rierodptic characteristic as wings. The

blade sections of the propeks uder consideration me not perfectly ideal in thk respect.
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Especially at small angles of attack, the sections are likely to produce a lift of irregular mag-
nitmde. At larger angles of attack, however, the lift curve is more than likely to run straight
and to lmve a slope at least close to the one shown by ideal sections. It is, therefore, to be
expected that over a considerable range the propellers -will give regular results as far as this
regularity is dependent on that of the blade section action.

THE SLIPSTREAM.

In addition, propeller action is determined by the general characteristic ,of the air flow
created. The propeller, moving with the velocity of flight ~ through air originally at rest,
leaves behind it a slipstream whose final average velocity may be denoted by v, The propeller
is in a region of air which has already assumed a par~ of this final slipstream velocity. There
is some controversy as to how much. Imagine the propeller nob progressing and the air moving
witJl the velocity V as in a wind tunnel. Its increase of velociby when passing the propeller
may be denoted by w, so that it passes with the velocity w+ 1“. The thrnst. created per uni~ of
mass of the passing air is equal to its final increase of velocity, tha~ is to v. This thrust Qcts
on air passing with the velocity (w+ V), and hence imparts to it the energy (w+ V)v per unit

of mass, ()
This is equal to the increase of its kinetic energy which is ~ + ~’ v per unit of mass,

Hence
.- ,

(1) ~=!?
$

It results, therefore, that the air when passing the propeller has already assumed just half of
the slipstream velocity. Hence the mass passing the propeller disc per unit of time is

()q v+;p
where D denotes the propeller diameter and p the density
be expressed

of the air. The thrust can therefore

(2)
()

T= D’: V+; t?p
+

or otherwise written

(3)

The lefthand side of (3) represents a thrust coefficient, the thrust divided by the propeller
disk area and divided by the dynamic pressure of theveloci~y of flight. It n-my be denoted by

G= -=---
@?v2p (definition) ,

4 g

l?rorn equation (3) follows then

(4)

Nor very small thrust coefficients CT and relative” slipstream velocities ~,, but only for such,

equation (4) can approximately be written

(4a)
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This is the essential content of I?roude’s momentum theory of the propeIIer. Since the use-
ful work of the propeLler thrust is done at a velocity V, but the propeller acts in a region of air

()
~.

passing it with the -relocity ~+~ there is a loss. Only the fraction ‘-~ of tie hor~epo~~er
. v+ ~

{ielivered to the propeIIer is reproduced b-y ~he propeller as thrust horsepower, the remaining
part is used for the creation of the dipstream. There are other additional losses. The slip-
stream velocity is not, quite uniform, and the air receives fi smd rotational -relocity too, both of
which results in a small increase of the dipstream loss. Then there is the friction of the air pass-
ing the propeller bl&des, quite a considerable item , since bhe bhtde velocity is rather large.
Therefore

T’ 1~o=—=_____
~T+; 1+;;

is only the upper hit of the propelkr efficiency, which a propelIer w-N never act ualIy reach;
the efficiency is alwayi smaIIer. This question is discussed in reference (2), and I am also taking
ii up in a later part of this paper.

~HIZ SUP CURVE.

The momentum theory, in particular equation (4), states that there is a simple rekt ion
between the thrust coefficient (7, and the average or—as I prefer to calI it—nominal relative
slipstream velocity v/V. Ikch of them can easily be converted into the other by use of the
slide ruler. It is certainly more natural and co~-renient to use the thrust. coefficient if the
magnitude of the thrust itself is under consideration. Still, in the earlier parts of propeller
computations, there are great admmtages connected with the use of the relative slipstream
velocity u/~ instead of the fhrust coeftlcient itself, which quantity is then finally converted into
the thrust coefEcient by means of equation (4). These advantages become particularly con-
spicuous if raw.dts of propeIler tests are to be laid down or to be analyzed, as in the present
paper. These advantages are the natural consequence of the fact that the conditions under
~-~ch one particular propelIer is working are primarily
velocities; for instance, the velocity of flight. ~ and the
of the propeller tip ?7

(5) U=rnD

(where n denotes the number of revolutions per unit of

determined by the rnaggtude of tmo
tangential component of the velocity

time). It is probable in itself that a
third and fundamental veloeity, chosen in this paper the nominal slipstream velocity v, stands
in a simpler relation to two other velocities than does a force. A closer examination contlrms
this. If (a.) the blade sections acted Iike ideal wing sections in an ideal fhid and (b) the change
of the shape of the slipstream had no influence on the air forces, the air How being irrotational
in all points other than the boundaries of the slipstream, the velocity at any point, however
situated relative to the rotating propelIer, would be a linear function of the two velocities
describing the propeller motion; i. e.,

V’=AV+BZ7

where A and 1? are constants. Each of the velocities 1’ or U, if existing alone, would create
at the point a veIocity A 1’ or B U, respectively, proportional to the magnitude of the creating
docity ~’ or U; and if ~ and V are finite at the same time, the resulting distribution of vdoci~y
would be the superposition of the tro flo-ws created by each: giving rise to the last equation.
The nominal slipstream velocity v is the average of many such velocities T-’, and hence it
too could be represented in the form

(fj) V= J47+BU

—
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It is convenient to divide (6) by one of the propeller velocities V or U, particularly to divide
ifi by V, the velocity of flight, although then the remdting equations need a special interpreta-
tion for the case of advance zero, V= 0. The division gives

(6a)

or otherwise written

(7)
t=%-(~)~

u()70 is then that magnitude of the reIative tip velocity U/V at which the slipstream velocity,

and hence the thrustj becomes zero. It stands in a simple relation to the effective pi~ch ratio
of the propeller, as will be shown later. Equation (7), expressing a relation between the two

—

variables ~, and ~> is linear. Hence the relative slip velocity?, plotted against the relative tip

velocity ~ would be a straighfi line. I intend to make an extensive use of this curve, and it

is therefore converiient to have a designation for it. I call it the ‘i slip curve” in this p~per.
The magnitude of m indicates the slope of this slip curve and nmy be named the slip modulus
of the propeller. Its discussion will be taken up later. All three assumptions made, the idea,
blade sections, the ideal fluid, and the unchangeable shape of the slipstream are not strictIy
fulfilled, However, under ordinary conditions of flight, the fist two can be accepted, as the
air forces of the blade sections are in close a=geemenb to those deduced therefrom, ‘1’he shape
of the slipstream boundary, too, is not very changeable, and its changes might not bring about
serious changes of the air forces produced, This can not be settled definitely by discussion.
It has to be left to tests to fl.nd out what really happens, which influences me the important
ones, which assumptions and arguments are sound and which are not. The discussion gi vcs
a suggestion as to how to proceed. Actually plotting the slip curve v/V and U/V is a most
convenient method for examining what happens. The shape of the curve thus found is a
criterion for the expediency of the assumptions mentioned. If the slip curve appears to be a
straight line, the propeller action can be interpreted and understood by the comparison with
the ideal propeller acting in the ideal fluid neglecti_gg the change of the slipstream shape. A
practical method for computing propellers then readily suggests itself. If the slip curve does
not appear to be straight, two explanations can be oflered. Either the blade sections do not
possess a regular aerodynamic characteristic under the conditions tested, or the distribution
of the slipstream velocity is fundamentally different from the ideal constant velocity, and the
boundary is modified, too, if one can speak of a boundary at all.

DISCUSSION OF THE SLIP CURVES FOUND.

We are now prepared to take the actual slip curves into view as they are computed from
Doctor Durand’s tests and plotted in the diagrams of this paper. As a rule, all slip curves of
propellers only differing by the magnitude of the pitch are drawn together in one diagram.
The first two pages, 16 figures containing 67 propellers, give the systematic series of Doctor
Durand. %x additional diagrams show the slip curves computed from those tests of the same
investigations that form small series in themselves and are likely to throw more light on the
present problem.

In all diagrams, the relative tip velocity, ~= n’D f, is plotted horizontally, and the relati~e

slipstream velocity, f,= ~1+(D2:~v2i)-fisPIotte~ vertically.Theportionof thecurve
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below the zero a.ti comespomls to negati~e thrust. This portion is nofi of interest for the pract.icaI
use of the propeller, but the shape of the curve there gives an exphmation for the shape of &he
slip curve for propeuers of -rery small pitch (as, for inst ante, propelIer No. 144) at moderate
positive reIatiYe dip ve~ocity. The dip cuive for negative thrust is not at aII straight, nor
the sLip curve for smal~ positive thrust of propeI.lers haw@ a smti pitch. There can hardly
be any doubt about the reason for this. The a@es of attack of the blade sections are then
~ery smalI or negative and the sections have an irregular aerodynamic characteristic, -which
is reproduced in the shape of the slip curve.

The sIip curve for propellers of normal pitch and positive and moderate reIative slipstream
w+locity can be represented as a straight line in aII cases. The observed points often lie very
exactIy on a stra@t line, as, for instance, with propeIler ILTo.39. It is to be remembered that
these tests are necessarily not very exact. It -was also sometimes difEcuIL to obtain the exact

v.
quantities as originality measured from the diagrams by which they are represented. ~ m par-

ticular is to be computed by using the inv-erse ratio of GV, gi~en in the diagram. This leads

to large errors for very small vaIues of ~Y which is with aLIpoints far to the right and way

up in the slip curves. MI the highest points are unreliable for this reason.
Itt appears then from Doctor Durand’s tests that within a considerable r~~e and within

the one of practical application tihe slip curve is a siraighfi line. In the next section I proceed
to examine whether the characteristics of these straighi lines, their position and their slope,
can be explained by compa&son with the ideaI propeller. It will appear tha~ this can be done
and the use of Lhe slip curve furnishes therefore a good method for the computation of propellers.
Before discussing thati I wish to finish the discussion of the slip curves obtained from the
tests.

The reader wll notice that the curves deviate from a straight line not only at the lower ends,
mostly at negative thrust, but at the upper ends too, though here in quite another way, there
are irregularities with practically all slip curves. The slip curve has a break there and then fol-
Iows a stra&ht line again, but one ~th a steeper slope than underneath the break. The upper
portions correspond to a small advance of the propeller. Then the thrustt appears larger than
wotid be expected from the lower portion of the slip curve.

These breaks are probabIy not to be explained by irreg.darities of the action of the blade
section. In general, the break occurs at a positive, I&h relati~e tip velocity if the pitch is small.
The Iast diagram, for a propeller with ch~~eable pitch, is interesthg. The breaks are hereon a
very reguIar curve. The tests do not give enough information to establish the reason for the
breaks definitely. At horizontal &~ht the propellers are probably aIways in the mqe beIow the
break, it is therefore not of paramount importance to study the reason of the breaks in detaiI.
SW it is of interest. The occurrence of these breaks shows, for instance, how unreliable are the
conclusions as to conditions of flight when drawn from tests at zero advance. The starting
thrust is increased, due to the break, which fact in itself is quit-e desirable.

It is convenient to use the slip curve for the analysis and the computation of propellers,
because this curve, being a straight line, is determined by two constants only, its position and
its slope. The position is determined by its intersection with the horizontal zero axis at a

()
point -which -was denoted by ~ ~. This is the reIative tip velocity for zero thrust.. If the

blades were parts of mathematical helical surfaces with the pitch p and moving in a fluid
without viscosity, this relative tip docity wouId be

. [8)
(970

= D;
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For at that rela~ive tip velocity the air would be at rest at a~l points and the propeller would
screw itself through it> as through a solid nut, experiencing no air forces whatever. A small

viscosity woukl give rise to small tangential forces, producing no considerable thrust in itself.
They would give rise to a small rotation of the air passing the propeller and thus indirectly
originate some minor air forces and maybe a small thrust. This would har(lly mnoun L h
much under ordinary c.on(litions.

With actuaI propellers equation (S) does not. hold true for a~other reason. This is tlw shape
of the blade section. The propeller by no means has the shape of the helical surface m of a pm~
of it, the pitch of which is used as nominal pitch. The blade section is ordinarily plane at the
bottom and cambered at the top and the nominal pitch is that of a helical surface dctmminrt?
by the bottom. Now, as is -well known from the study of ordinary wings, the direction of flight
of such wings giving the liffi zero is by no means parallel to its ~ower surface. If, however, the
a%@e of attack is zero, fi]le ]ift has a considerable posit,ive ~~lue and ~he wing htIS tL) bc tu~IIe(i

back by 3° or more, depending on the shape of its section, in order to create no iift. From
this experience it follows that the effective pitch of a propeller may be expected to be krgw
than the nominal pitch measured in the usuaI way from the lower surface of the bIade.

The sections used in the tests of Doctor Durand’s propeller series are noi exactly the ones
used in practice. The tests, therefore, can not be used for the study of the magnitude of the
main constants of actual propellers: their effective pitch, and the effective blade width. The
great value of Doctor Durafid’s tests is the con~enient way in which they can be used to esLab-
lish the generaI laws underlying propeller action. With this purpose in view it will be instructive
8nd important to compute the average value of the angle of attack for the lift zero of the blade
sections for one tvpica] propeller test, and to ~omp~re this angle with that which may h rca-
Sollably expecte(f from the SLUCIYof ordinary win<gs. Since all propeller tests under considera-
tio[l at present g’i~e resu]ts ~ons’ist,en~\t,ith ~tlch other t]lis One t,rial ~~1 be sufl~eient to de~id~
whether t.l]eblade sec~ioll effect is reall ~,t,lleexpltillltio~ for tile ~lisc,repanc,ybetr~,cen the nominrd
pitch and the effecti}~e pitch< ‘

Take for instance propeller No. 20. The slin curve intersects with the horizontal zero axis
U“”o L

at the point ~ =3.75. The nominal pitch ratio ~= 0.70.
0

For rough calculations the pro- “

]>elJerblade can be supposed to be concentrated at” ~ mean radius, say, at 0.70 of the radius.
‘rllis gives a“ tangential velocity of 0 TO of the t,ip ~elocit~ and t,~~cayerage relative tangcnti~l
‘eiocitY for the thrust zero is ther~fore 375 x (I 70 = ~.6~’ This is the cotangent Of 20° ~0’*
‘~le nominal pitch is 0.7 D = 0.318x 0.7(1 DT. 0.318 is th~ t%llgent of 17°40’. The difference
is 3° 10’. Add to this a sma]l Correction due to frictional drag, rot,ation of t,he S]ipstrewn MId

the curvature of the relative path between the air and the blnc[e, of say, ~0 giving in all 3~0.
‘Mis angle of zero lift is now indeed most plausible for the average blade section used. Thus
this point is settled. The same computation should be made and the actual zero angle computed
from tests with actual propellers or models thereof. It can then be assumed that propellers
t)f similar type have the same zero angle and the effectiTc pitch can easily be computed from i~
:md the nominal pitch, The computation is to be made backward. (a) The eflcc~ive pit(:)l
at a metin radius (say 0,7P) is converted into degrees. (b) The zero ang]e is added to it. (c) Tho
sum is converted again into the pitch as ordinarily measured.

.
THE SLIP MODULUS.

The sIip curves derivecl from the tests are nearIy parzllel for propellers only rlifleril]g l)j
tl~c pikdl. The cnr~es htive a larger slope if the mean blade width is 1arger. lL WOUIC1t]leref(jr(?
appear that, the slip modulus m depends chiefly on the mean relatire bIade w-idth tind is no[
very much influe~ced by the pitch.

1(, can he shown easi~y thst such a law can be expected from a propeller with nwro\\-
blades, idexl blade sections, and low pitch ratio. With such propellers the, influence of the
slipstre~m velocity on the effecti;-e tingk of att:~ck can be neglected. Suppose & Made nrca
,Y to bc roncentrmte(l at tile distance 0.7 r frcifil the axis. The tangential velocity 27’ at. this
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point may be such as to give zero thrust at the velocity of fright r. Hence it corresponds to
the intersection of the slip cur-re and the horizontal axis. In order to compute the slope of
this curve, I proceed to compute a point slightly dove the horizontal rcxis. The mlocity of
flight may ~ema~ T as before, but the tangential ~elocit.y may increase from ~’ to ~’+ d i?’

where d 0’ is a differential. Then the cotangent of the angle of relative motion between the
blade and the air is increased from iYI’ ~ to (D’+ d 27’) ~ and hence the angle itself is increased by

The square of the reIative ~elocity between blade and air is

,-2~+i!Z~J

Hence the lifti produced, being approximately equal to the thrust, is
~= ~T~r2 ~ d 17’

~ ;’
and the thrust coe~cient is

~T=~g y

equal to 2 # according co equatiort (4a). Hence

(fT”
Actual propellers can not be considered as haying au infinitely s_maIl b~ade -width. If the tip
~e[ocit.y is increased, a finite slip velocit.y one-half m times as great M it, is produced, which
neutralizes a part of the increase of the angle of attack of the blade, so tha~ a smaller lift and
slipstream veloeity is produced and the dip moduIus becomes smalIer than according to the
last fornda. The moduIus is not quite independent of tbe blade width, therefore. The
m@e of attack increase is only

~u, 1–;;

. .
and the equation for M is therefore

“=%(WW
giving

. /$s
.{ —’D2

Doctor D~~d’s prope~ers Wi-ithnarrow- blades have a mean nominal blade tidth ratio ~~ = 0.15.

It is actually smaller, say, 0.14, as the portions near the center are inefficient and the tip slightly

rounded. (7.7 ~?in most series: changes from about 3 to abouh 5. The modulus as resulting

from the h& equation is then 0.15 and 0.13, FespectiveIy, giving a mean wdue of 0.14. The
tests gi-re as a-rerage m =0.133, which is less than the theoretical value. In vie-iv, however, of
the fact that the blade sections did not produce quite. as much lift as ideal sections do, and that
the mean radius 0.7 is chosen a little arbitrarily, the agreement can be considered as good.
The blades ,aIso twist under the air forces, diminishing the thrust.

The analysis shows thus that the slip curves as obkined from the tests are in substantial
agreement -with those to be expected from the consideration of the ideal propeIler. The
explanation offered for propeller action is thus demonstrate ed to be fundamentally sound, and
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the method of using the slip curves fo-r the computation of propellers appems promising, These
curves and their constants should be studied for actual propellers and models thereof in order
to provide the numerical data necessary to employ successfully the method of tho slip curve,

TJ3ETORQUE.

The slip curve represents primarily the relation between the condition of motion of tho
propeller and the thrust. The designer is even more interested in the torque. llnfortunately,
model tests do not lend themselves readily to obtain reliable and exact information on the torquo
and Doctor Durand’s tests even less, because the b~ade sections aro rather unusual. This
refers to the determination of the exact torque, Since the greatest portion of the horsepower
absorbed by the propeller is transformed into the thrust horsepower, and the efIlciency of tho
propeller is known, at least approximately, there remains no very great doub~ about khe torque,
if the thrust is known; and the exact knowledge of the thrust for a certain condition is the first
and chief requirement for the computation of the torque. There remains only some doubt
about that portion of the torque which is created by the friction of the bIades and by some
other minor sources of loss.

The question can be discussed in genersl at 16ast. A torque coefficient consistent with tllo
thrust coefficient used in this paper is

c,= Q (definition)
D Vz!!y:
3

The torque is divided by half the diameter, by the area of the propelIer disk, and by the dynamic
pressure of the velocity of flight. This coefficient is the only one which, together with the thrust
coefficient G and the relative tip veIocity t7/’V, gives a simple expression for h propeller
efficiency v without any numerical factor.

G.q. —

OQ. ;

The torque coefficient can be divided into the following three parts:

c,
1. -u

v

The horsepower absorbed by this portion is equal ko the thrust horsepower.

2.

The horsepower absorbed by this portion is used for building up the tiheorekicn] slipstream.

3. The remaining part

comprises all remtiining losses, chiefly the friction between the blades and the air. This pmt of
the torque coefficient will therefore assume a more constant ~alue if converted into a sort of drag
coefficient of the blades by multiplying it by

I ha~e shown in reference (2) that the drag coefficient so defined and computed is about CD= O.Of%
for actual propellers.
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COMPU~ATION OF THE P1TC13.

I wish at last to show, in ageneral way, how to proceed by using the slip curve in the solution
of one practical prob~em often occurring. This is the cornputa.tion of the pitch. The horse-
power, the revo~utions per minute, and the veIocity of flighti may be given. The designer as a
rule has no diflimlty to decide on the diameter and the blade width of the propeller. He can
then estimate the amiIable thrust, and hence the thrust coefficient, and obtains from it the
torque coefficient and the torque, using a drag coefficient of the bIades in the neighborhood of
c.= 0.0,25. The torque has to check with the available horsepower, otherwise the calculation
has to be repeated. The desigger knows now the thrust coefficient and the re-rolutions, and com-
putes from the former the relative slip velocity and fromthe latter the relative tip velocity,
using equations (4) and (5]. The sfip mod~w m ti know-n for the type of propelIer used and its
bIade width. It is not very different from m= }~ for ordinary prope~lers. That gives the rela-
tive tip velocity for the thrust zero.

17

()

Uv.—— —
70 v Tar

and the eflectire pitch is then

~e=$

F

The nominal pitch is smaller, .as expIained above. It may be, ho~ev-er, that the difference is
not large, as the ek.stic twist of bhe bIades ma-y neutralize their camber effect. This has to be
determined in flight.
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